

False Reasons to Stop Rasterizing

- To get realistic lighting effects
 - The goal is information, not just effects
- To allow a simple unified model
 - Instead, choose the best technique per effect
- Ray-tracing is now fast enough
 - But rasterization is often a lot faster
 - Moore's law applies to both

Memory Bandwidth

- Memory density and cost per bit have followed Moore's law
 - This & bin sort is why Sutherland was wrong: depth buffers became cheaper and faster
- Memory bandwidth per data pin hasn't
 - Wider data busses help, but not enough
 - Rasterization provides good memory locality for efficient caching & burst accesses

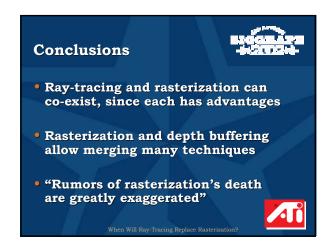
When Will Ray-Tracing Replace Rasterization

GPUs/VPUs are Stream Processors, NOT CPUs

- Both are general purpose, but...
- GPU: Massive SIMD parallelism
 - SIMD-like conditionals (MIMD is costly)
- GPU: Streaming reads and writes
 - GPU: 5x CPU latency on memory-to-memory
 - >20x latency on load A0/store A1/load A1
 - Coherency is inherently very costly

When Will Ray-Tracing Replace Rasterization

Algorithmic Advantages


- Efficient depth culling on pixels
 - Hierarchical depth tests save shading work
 - Can occlusion cull triangles as well
- Simple layering effects
 - Compute lighting and shadows separately
 - Compute an image, then use it as a texture
 - Ray-trace where appropriate

Aï

When Will Ray-Tracing Replace Rasterization?

Future Directions • Anti-aliased lighting • See Jim Blinn's 1998 SIGGRAPH keynote • Surfels/splatting/randomized Z-buffer • Pfister (2000), Zwicker (2001), Wand (2001) • Eliminating unnecessary work • Jones, et. al. "Shader Maps" (2001 sketch) • Even more this year...

